Estimating biomass of barley (Hordeum vulgare L.) using remotely sensed multispectral images

Authors

  • Luz María Vigabriel Navarro Investigador junior, Instituto de Investigaciones Socio-Económicas, Universidad Católica Boliviana San Pablo, Bolivia. luz.vigabriel@ucb.edu.bo https://orcid.org/0009-0001-3332-4664
  • Javier Mauricio Osorio Leyton Docente, Texas A&M University AgriLife Research, Temple, EEUU. josorio@tamu.edu https://orcid.org/0000-0003-4573-4932
  • Carlos Eduardo Quezada Lambertin Investigador, Instituto de Investigaciones Socio-Económicas, Universidad Católica Boliviana San Pablo, Bolivia. Doctorante, Department of Agricultural Economics, Faculty of Bioscience Engineering, Ghent University, Bélgica. cquezada@ucb.edu.bo https://orcid.org/0000-0002-4291-4500
  • Jean Paul Benavides Lopez Investigador docente, Instituto de Investigaciones Socio-Económicas, Universidad Católica Boliviana San Pablo, Bolivia. jbenavides@ucb.edu.bo https://orcid.org/0000-0001-5251-0166

DOI:

https://doi.org/10.53287/iguo9951ru99j

Keywords:

aerial biomass, unmanned aerial vehicles, remote sensing, vegetation index

Abstract

This study explores the potential of unmanned aerial vehicles (UAVs) and multispectral image analysis to estimate barley crop biomass in the Bolivian highlands. Using a drone equipped with a multispectral camera, images of barley crops were captured, and their biomass was estimated by calculating the NDVI vegetation index and applying a polynomial regression equation based on this index. The methodology proved to be efficient and precise, offering a non-invasive and cost-effective long-term alternative for agricultural research and decision-making compared to conventional methods. This approach, which combines remote sensing with advanced analytical models, demonstrates a strong correlation between NDVI and barley biomass, with a coefficient of determination (R2) of 0.94, highlighting the viability of this technology to enhance agricultural monitoring and optimize crop production in regions with climatic and resource limitations. This research opens up new opportunities to improve agricultural management and optimize crop production, providing farmers with a precise and efficient tool for informed decision-making.

Downloads

Download data is not yet available.

Published

2024-08-31

How to Cite

Vigabriel Navarro, L. M., Osorio Leyton, J. M., Quezada Lambertin, C. E., & Benavides Lopez, J. P. (2024). Estimating biomass of barley (Hordeum vulgare L.) using remotely sensed multispectral images. Revista De Investigación E Innovación Agropecuaria Y De Recursos Naturales, 11(2), 18–29. https://doi.org/10.53287/iguo9951ru99j

Issue

Section

ARTÍCULOS ORIGINALES